On the string averaging method for sparse common fixed-point problems
نویسندگان
چکیده
We study the common fixed point problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We propose a definition of sparseness of a family of operators and investigate a string-averaging algorithmic scheme that favorably handles the common fixed points problem when the family of operators is sparse. The convex feasibility problem is treated as a special case and a new subgradient projections algorithmic scheme is obtained.
منابع مشابه
Sparse string-averaging and split common fixed points
We review the common fixed point problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We present our recent definition of sparseness of a family of operators and discuss a string-averaging algorithmic scheme that favorably handles the common fixed points problem when the family of operators is sp...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملOn Fixed Point Results for Hemicontractive-type Multi-valued Mapping, Finite Families of Split Equilibrium and Variational Inequality Problems
In this article, we introduced an iterative scheme for finding a common element of the set of fixed points of a multi-valued hemicontractive-type mapping, the set of common solutions of a finite family of split equilibrium problems and the set of common solutions of a finite family of variational inequality problems in real Hilbert spaces. Moreover, the sequence generated by the proposed algori...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملIterative scheme based on boundary point method for common fixed point of strongly nonexpansive sequences
Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let ${S_n}$ and ${T_n}$ be sequences of nonexpansive self-mappings of $C$, where one of them is a strongly nonexpansive sequence. K. Aoyama and Y. Kimura introduced the iteration process $x_{n+1}=beta_nx_n+(1-beta_n)S_n(alpha_nu+(1-alpha_n)T_nx_n)$ for finding the common fixed point of ${S_n}$ and ${T_n}$, where $uin C$ is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International transactions in operational research : a journal of The International Federation of Operational Research Societies
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2009